Lab 6 - Resonance

A spring oscillates with a natural frequency of $\lambda/2\pi$. If we drive the spring with a sinusoidal force $C\sin(\omega t)$, where $\omega \neq \lambda$, then the spring oscillates according to:

$$y(t) = \frac{C}{\lambda^2 - \omega^2} (\lambda \sin(\omega t) - \omega \sin(\lambda t))$$

1. Use L'Hopital's Rule to determine y(t) in the limit as $\omega \to \lambda$. Show your work.

2. Define the result of 1. as follows:

$$y_o(t) = \lim_{\omega \to \lambda} y(t)$$

(a) Is $y_o(t)$ periodic? If so, give the period. If not, state how you know.

(b) Find the amplitude as $t \to \infty$.

3. Plot y(t) for C = 1, $\lambda = 1$ and $\omega = 0.5, 0.8, 0.9, 0.99$ and 0.999. How do the graphs change? Do they confirm your work in part 2.?